Sample Paper
Class 12 Maths
Sample Paper 4 | Class 12 Maths
CBSE questions

Time: 3 hours                                                                             Maximum marks: 80

General Instructions:

1. This Question paper contains - five sections A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.

2. Section A has 18 MCQ’s and 02 Assertion-Reason based questions of 1 mark each.

3. Section B has 5 Very Short Answer (VSA)-type questions of 2 marks each.

4. Section C has 6 Short Answer (SA)-type questions of 3 marks each.

5. Section D has 4 Long Answer (LA)-type questions of 5 marks each.

6. Section E has 3 source based/case based/passage based/integrated units of assessment of 4 marks each with sub-parts.

 

Section –A

(Multiple Choice Questions)

Question 1:

The values of x and y for which the matrices 

            

are equal        

(a) 7,

(b) 7,

(c) 7, 7

(d) No value of x and y

 

Question 2:

The value of  is

(a)  *  

(b)  *

(c)  *  

(d) None of these

 

Question 3:

The values of x, y and z where the vectors a = xi + 2j + zk and b = 2i + yj + k are equal 

(a) 2, 2, 1

(b) 2, 1, 2

(c) 1, 2, 2

(d) 2, 1, 1

 

Question 4:

The principal value of sin-1  is

(a)  

(b)

(c)

(d)

 

Question 5:

The distance of the plane 2x – 3y + 6z + 14 = 0 from origin, is

(a) 2

(b) 3

(c) 4

(d) 5

 

Question 6:

If P(A) = 0.8, P(B) = 0.5 and P  = 0.4, then the value of P  is

(a) 0.32

(b) 0.48

(c) 0.56

(d) 0.64

 

Question 7:

If a and b are the order and degree of differential equation y  + x3  + xy = cos x, then

(a) a < b

(b) a = b

(c) a > b

(d) not defined

 

Question 8:

If a = 2i - j + 2k and b = -i + j - k then the unite vector in the direction of (a + b) is

(a)

(b)

(c)

(d)

 

Question 9:

The value of  is

(a)

(b)

(c)

(d)

 

Question 10:

If a function f : R -> R defined by f(x) = |x|, x R, then the function is

(a) One-One

(b) Many-one

(c) One-One and Many-one

(d) Neither One-One nor Many-one

 

Question 11:

A 2 * 2 matrix whose elements are given by aij = 2i – j, is

 

 

Question 12:

The points of discontinuity of f, where f is defined by

f(x) =             if x < 0

             -1         if x 0, is/are

(a) All positive real numbers only

(b) All negative real numbers only

(c) All real numbers

(d) There is no point of discontinuity

 

Question 13:

The equation of motion of an aeroplane are x = 5t, y = -10t, z = 5t where t is given in seconds and distance measured is in km then path of aeroplane is

(a) Straight line

(b) Parabola

(c) Hyperbola

(d) Circle

 

Question 14:

If A = 4i + 3j and B = 3i + 4j then |A| + |B| is

(a) 5

(b) 5

(c) 10

(d) 10

 

Question 15:

The sum of cofactors of all elements of   is

(a) 2

(b) 4

(c) -5

(d) -3

 

Question 16:

If the solution of a differential equation  represents a circle then the value of a is

(a) 2

(b) -2

(c) 3

(d) -4

 

Question 17:

Rekha and Aman appeared of an interview for two vacencies. The probability of Rekha’s selection is  and for Aman is . The probability that both of them are rejected, is

(a)

(b)

(c)

(d)

 

Question 18:

Feasible region of a LPP has shown in the given figure.

The corner points of feasible region are

(a) (60, 0), (120, 0), (60, 30), (40, 20)

(b) (0, 0), (0, 60), (120, 0), (40, 20)

(c) (0, 0), (60, 0), (120, 0), (60, 30), (40, 20)

(d) (60, 0), (0, 60), (120, 30), (40, 20)

 

ASSERTION-REASON BASED QUESTIONS

In the following questions, a statement of Assertion (A) is followed by a statement of Reason (R).

Choose the correct answer out of the following choices.

(a) Both (A) and (R) are true and (R) is the correct explanation of (A).

(b) Both (A) and (R) are true but (R) is not the correct explanation of (A).

(c) (A) is true but (R) is false.

(d) (A) is false but (R) is true.

 

Question 19:

Let W be the set of words in the English dictionary. A relation R is defined on W as R = {(x, y) W * W such that x and y have at least one letter is common}

ASSERTION (A): R is reflexive.

REASON (R): R is symmetric.

 

Question 20:

 

 

Section – B

Question 21:

If  = θ, then what is the value of cos θ?

 

Question 22:

Find the approximate change in the volume V of a cube of side x metres caused by increasing side by 1%.

 

Question 23:

Find the equation of the normal to curve y2 = 4x + 5 at the point (-1, 1).

 

Question 24:

Evaluate:    

 

Question 25:

The radius of a circle is increasing at the rate of 0.7 . What is the rate of increase of its circumference?

 

Section – C

Question 26:

Find the value of

 

Question 27:

A die is thrown. If E is the event ‘the number appearing is a multiple of 3’ and F be the event ‘the number appearing is even’ then find whether E and F are independent?

 

Question 28:

Evaluate:

 

Question 29:

Verify that the function  is a solution of the differential equation

 

 

Question 30:

Solve the following LPP.

Maximize Z = 7.5x + 5y  

subject to the constraints,

2x + y 60       

x 20               

2x + 3y 120  

x, y 0             

 

Question 31:

A point on the hypotenuse of a triangle is at distance a and b from the sides of the triangle. Show that the minimum length of the hypotenuse is .

 

Section – D

Question 32:

Find the area of the region bounded by the curve y2 = 4x and the line x = 3.

 

Question 33:

Show that the relation R defined in the set A of all triangles as R = {(T1, T2): T1 is similar to T2}, is equivalence relation. Consider three right angle triangles T1 with sides 3, 4, 5, T2 with sides 5, 12, 13 and T3 with sides 6, 8, 10. Which triangles among T1, T2 and T3 are related?

 

Question 34:

By using properties of determinants, show that:

 

 

Question 35:

The scalar product of the vector i + j + k with a unit vector along the sum of vectors 2i + 4j – 5k and λi + 2j + 3k is equal to one. Find the value of λ.

 

Section – E

Question 36:

Suppose a dealer in rural area wishes to purpose a number of sewing machines. He has only Rs 5760 to invest and has space for at most 20 items for storage. An electronic sewing machine costs him Rs 360 and a manually operated sewing machine Rs 240. He can sell an electronic sewing machine at a profit of Rs 22 and a manually operated sewing machine at a profit of Rs 18.

Based on the above information given, answer the following questions.

(i) Let x and y denotes the number of electronic sewing machines and manually operated sewing machines purchased by the dealer. If it is assume that the dealer purchased at least one of the given machines, then

(a) x + y ≥ 0               (b) x + y < 0               (c) x + y > 0                   (d) x + y ≤ 0

(ii) Let the constraints in the given problem is represented by the following inequalities

x + y ≤ 0

360x + 240y ≤ 5760

x, y ≥ 0

Then which of the following point lie in its feasible region.

(a) (0, 24)                  (b) (8, 12)                   (c) (20, 2)                   (d) None of these

(iii) If the objective function of the given problem is maximize Z = 22x + 18y, then its optimal value occur at

(a) (0, 0)                     (b) (16, 0)                      (c) (8, 12)                        (d) (0, 20)

 

Question 37:

The Government declare that the farmers can get Rs 300 per quintal for their onion on 1st July and after that the price will be dropped by Rs 3 per quintal per extra day. Ramu’s brother has 80 quintal of onions in the field on 1st July and he estimates that the crop is increasing at the rate of 1 quintal per day.

Based on the above information given, answer the following questions.

(i) If x is the number of days after 1st July, then the price and quantity of onion respectively can be expressed as

(a) Rs (300 – 3x), (80 + x) quintals          (b) Rs (300 – 3x), (80 - x) quintals                      (c) Rs (300 + 3x), (80 + x) quintals          (d) Rs (300 + 3x), (80 - x) quintals

(ii) Revenue R as a function of x can be represented as

(a) R(x) = 3x2 – 60x - 24000                     (b) R(x) = -3x2 + 60x + 24000

(c) R(x) = 3x2 + 40x - 16000                     (d) R(x) = 3x2 – 60x - 14000

(ii) On which day should Ramu’s father harvest the onions to maximize his revenue?

(a) 11th July              (b) 20th July                  (c) 12th July                     (d) 22nd July

 

Question 38:

A company produces three products every day. Their Production on certain day is 45 tons. It is found that the production of third exceeds the production of first production by 8 tons while the total production of first and third product is twice the production of second product.

Using the concept of matrices and determinants, answer the following questions.

(i) If x, y and z denotes the quantity (in tons) of first, second and third product produced respectively, then which of the following is true.

(a) x + y + z = 45           (b) x + 8 = z             (c) x - 2y + z = 0           (d) All of above

(ii) x : y : z is equal to

(a) 12 : 13 : 20              (b) 11 : 15 : 19       (c) 15 : 19 : 11              (d) 13 : 12 : 20

(ii) Which of the following is not true?

(a) |A| = |A’|                     

(b)  =                                       

(c) A is skew symmetric matrix of odd order, then |A| = 0                         

(d) |AB| = |A| + |B|

**********

Solving sample papers of Class 12 Physics, Chemistry, Maths, Biology, SST before exams is highly important and beneficial for several reasons:

  1. Exam Familiarity: Class 12 sample papers provide a glimpse into the actual Class 12 exam format, Class 12 question types, and time constraints. Familiarity with the Class 12 exam pattern reduces anxiety and boosts confidence on the exam day.
  2. Time Management: Practicing Class 12 sample papers helps you develop effective time management skills. You learn to allocate time to each section/question, ensuring you can complete the entire Class 12 paper within the given time frame.
  3. Identifying Weaknesses: By solving sample papers on Class 12 maths, Class 12 Physics, Class 12 Science, Class 12 Biology, Class 12 Chemistry, Class 12 SST, you can identify your strengths and weaknesses. Recognizing areas where you need more practice allows you to focus your efforts on improving those topics.
  4. Application of Concepts: Class 12 Sample papers require you to apply the concepts you have learned. This application reinforces your understanding and enhances retention.
  5. Mock Exam Experience: Solving Class 12 sample papers simulates a mock exam experience. This practice is essential to train yourself for the actual exam conditions and minimize surprises during the real exam.
  6. Self-Assessment: Sample papers offer an opportunity for self-assessment. By comparing your answers with the provided solutions, you can evaluate your performance and identify areas for improvement.
  7. Confidence Building: Scoring well in sample papers boosts your confidence and motivates you to perform better in the actual exam.
  8. Understanding Question Patterns: Class 12 Sample papers often follow a similar pattern to previous exams. By practicing these patterns, you become more attuned to the types of questions that might appear in the exam.
  9. Revision: Solving Class 12 sample papers serve as a comprehensive revision exercise, consolidating your knowledge across different topics.
  10. Coping with Exam Pressure: Regularly solving Class 12 sample papers helps you become more adept at handling exam pressure, ensuring you stay composed during the actual exam. In summary, solving sample papers is an integral part of exam preparation. It not only familiarizes you with the exam pattern but also improves time management, enhances problem-solving skills, and builds confidence. Regular practice of sample papers is a valuable strategy to ensure success in exams and perform at your best.

To effectively solve a Class 12 sample paper before the exam, it is recommended to follow these steps:

  1. Post-Syllabus Completion: Once you finish the syllabus, start solving sample papers. Aim to attempt at least one sample paper per week.
  2. Simulate Exam Conditions: Create an exam-like environment while solving the sample paper. Choose a quiet space, set a timer, and adhere to the exam duration to replicate the actual test conditions.
  3. Attempt the Paper: Begin solving the sample paper just as you would in the actual exam. Read each question carefully and respond to the best of your ability.
  4. Check Answers and Identify Mistakes: After completing the sample paper, check your answers diligently. Identify the questions you answered incorrectly or struggled with.
  5. Reflect on Errors: Analyze the mistakes you made and try to understand why you went wrong. Identify the underlying reasons, whether it was a lack of understanding, misinterpretation, or oversight.
  6. Revise Weak Topics: Focus on the topics or concepts where you felt less confident. Revise those areas thoroughly to strengthen your understanding.

By adhering to this approach, you can make the most of sample papers in your exam preparation. Regular practice in an exam-like setting helps you build confidence, improve time management, and fine-tune your problem-solving skills. Moreover, identifying and addressing your mistakes empowers you to rectify your weaknesses and perform better in the actual exam.

Last but not least, before solving sample papers, please visit:

  • Class 12 Best Videos
  • Class 12 Notes
  • Class 12 Download pdf of DPP solutions
  • Class 12 DPPs
  • Class 12 Online Tests
  • Class 12 NCERT solutions

Classes

  • Class 6
  • Class 7
  • Class 8
  • Class 9
  • Class 10
  • Class 11
  • Class 12
  • ICSE 6
  • ICSE 7
  • ICSE 8
  • ICSE 9
  • ICSE 10
  • NEET
  • JEE

YouTube Channels

  • LearnoHub Class 11,12
  • LearnoHub Class 9,10
  • LearnoHub Class 6,7,8
  • LearnoHub Kids

Overview

  • FAQs
  • Privacy Policy
  • Terms & Conditions
  • About Us
  • NGO School
  • Contribute
  • Jobs @ LearnoHub
  • Success Stories
© Learnohub 2025.