NCERT Solutions
Class 8 Maths
Factorisation

Ex.14.2 Q.4
Factorize:
1. a4 – b4
2. p4 – 81
3. x4 – (y + z)4
4. x4 – (x – z)4
5. a4 – 2a2 b2 + b4
1. a4 – b4 = (a2)2 – (b2)2 = (a2 – b2) (a2 + b2)
[a2 – b2 = (a - b) (a + b)]
= (a - b) (a + b) (a2 + b2)
[a2 – b2 = (a - b) (a + b)]
2. p4 – 81 = (p2) – 92
= (p2 - 9) (p2 + 9)
[a2 – b2 = (a - b) (a + b)]
= (p2 - 32) (p2 + 9)
= (p - 3) (p + 3) (p2 + 9)
[a2 – b2 = (a - b) (a + b)]
3. x4 – (y + z)4 = (x2)2 - [(y + z)2]2
= [x2 – (y + z)2] [x2 + (y + z)2]
= [x – (y + z)] [x + (y + z)] [x2 + (y + z)2]
[a2 – b2 = (a - b) (a + b)]
= [x – y - z)] [x + y + z] [x2 + (y + z)2]
[a2 – b2 = (a - b) (a + b)]
4. x4 – (x - z)4 = (x2)2 – [(x - z)2]2
= [x2 – (x – z)2] [x2 + (x – z)2]
[a2 – b2 = (a - b) (a + b)]
= [x – (x – z)] [x + (x – z)] [x2 + (x – z)2]
= [x – x + z] [x + x – z] [x2 + x2 – 2 × x × z + z2]
[(a - b)2 = a2 – 2ab + b2]
= z (2x - z) (2x2 – 2xz + z2)
5. a4 – 2a2 b2 + b4 = (a2)2 – 2a2 b2 + (b2)2
[(a - b)2 = a2 – 2ab + b2]
= (a2 – b2)2
= [(a - b) (a + b)]2
[a2 – b2 = (a - b) (a + b)]
= (a - b)2(a + b)2