
We know that
sin2 (x/2) + cos2 (x/2) = 1
and 2*sin (x/2)*cos (x/2) = sin x
Now, given,
√(1 - sin x) = √{sin2 (x/2) + cos2 (x/2) - 2*sin (x/2)*cos (x/2)}
= √{sin (x/2) + cos (x/2)}2
= sin (x/2) + cos (x/2)
Now, ∫ √(1 - sin x) dx = ∫ {sin (x/2) + cos (x/2)} dx
= 2cos (x/2) - 2sin (x/2) + C where C is an integral constant