learnohub
Question:
y=(xlogx)ki power log(logx) find dy/dx
Answer:

Given y = (x*logx)log(logx)

taking log on both sides, we get

      logy = log[(x*logx)log(logx) ]

=> logy = log(logx)*log(x*logx)

Now, differentiate w.r.t. x, we get

      (1/y)*(dy/dx) = log(x*logx)*{(1/logx) * (1/x)} + log(logx)*[(1/x*logx)*{logx + x/x}]

=> (1/y)*(dy/dx) = log(x*logx)*(1/x*logx) + log(logx)*[(1/x*logx)*{logx + 1}]

=> (1/y)*(dy/dx) = (log(x*logx)/(x*logx) + {log(logx)*(logx + 1)/(x*logx)

=> (1/y)*(dy/dx) = (log(x*logx)/(x*logx) + {log(logx){1/x + 1/(x*logx)}

=> dy/dx = y[(log(x*logx)/(x*logx) + {log(logx){1/x + 1/(x*logx)}]

=> dy/dx = y{(log(x*logx)/(x*logx) + log(logx)/x + log(logx)/(x*logx)}

=> dy/dx = {(x*logx)log(logx) }*{(log(x*logx)/(x*logx) + log(logx)/x + log(logx)/(x*logx)}

Not what you are looking for? Go ahead and submit the question, we will get back to you.

learnohub

Classes

  • Class 6
  • Class 7
  • Class 8
  • Class 9
  • Class 10
  • Class 11
  • Class 12
  • ICSE 6
  • ICSE 7
  • ICSE 8
  • ICSE 9
  • ICSE 10
  • NEET
  • JEE

YouTube Channels

  • LearnoHub Class 11,12
  • LearnoHub Class 9,10
  • LearnoHub Class 6,7,8
  • LearnoHub Kids

Overview

  • FAQs
  • Privacy Policy
  • Terms & Conditions
  • About Us
  • NGO School
  • Contribute
  • Jobs @ LearnoHub
  • Success Stories
© Learnohub 2025.