
Let C be the center of the circle which is in the first quadrant.
So, Center of circle = (a, a)
Also given that the circle touches the co-ordinate Axis.
Now, equation of the circle is
(x - a)2 + (y - a)2 = a2 .............1
=> x2 - 2ax + a2 + y2 - 2ay + a2 = a2
=> x2 + y2 - 2ax - 2ay + a2 = 0
Differentiate w.r.t. x on both side, we get
=> 2x + 2y(dy/dx) - 2a - 2a(dy/dx) = 0
=> x + y(dy/dx) = a + a(dy/dx)
=> x + y(dy/dx) = a{1 + dy/dx}
=> a = {x + y(dy/dx)}/(1 + dy/dx)
Put value of a in equation 1, we get
=> [x - {x + y(dy/dx)}/(1 + dy/dx)]2 + [y - {x + y(dy/dx)}/(1 + dy/dx)]2 = [{x + y(dy/dx)}/(1 + dy/dx)]2
=> [{x(1 + dy/dx) - {x + y(dy/dx)}}/(1 + dy/dx)]2 + [{y(1 + dy/dx) - {x + y(dy/dx)}}/(1 + dy/dx)]2 = [{x +
y(dy/dx)}/(1 + dy/dx)]2
=> [x(1 + dy/dx) - {x + y(dy/dx)}]2 + [y(1 + dy/dx) - {x + y(dy/dx)}]2 = {x + y(dy/dx)}2
=> [x + x(dy/dx) - x - y(dy/dx)]2 + [y + y(dy/dx) - x - y(dy/dx)]2 = {x + y(dy/dx)}2
=> [x(dy/dx) - y(dy/dx)]2 + (y - x)2 = {x + y(dy/dx)}2
=> (x - y)2 * (dy/dx)2 + (x - y)2 = {x + y(dy/dx)}2
=> (x - y)2 * {1 + (dy/dx)2 } = {x + y(dy/dx)}2
=> {x + y(dy/dx)}2 = (x - y)2 * {1 + (dy/dx)2 }
This is the required differential equation.