learnohub
Question:
Form the differential equation of the family of circles having centre in the first quadrant and touching the co-ordinate Axis.
Answer:

 

Let C be the center of the circle which is in the first quadrant.

So, Center of circle = (a, a)

Also given that the circle touches the co-ordinate Axis.

Now, equation of the circle is

     (x - a)2 + (y - a)2 = a  .............1

=> x2 - 2ax + a2 + y2 - 2ay + a2 = a2

=> x2 + y2 - 2ax - 2ay + a2 = 0

Differentiate w.r.t. x on both side, we get

=> 2x + 2y(dy/dx) - 2a - 2a(dy/dx) = 0

=> x + y(dy/dx) = a + a(dy/dx)

=> x + y(dy/dx) = a{1 + dy/dx}

=> a = {x + y(dy/dx)}/(1 + dy/dx)

Put value of a in equation 1, we get

=> [x - {x + y(dy/dx)}/(1 + dy/dx)]2 + [y - {x + y(dy/dx)}/(1 + dy/dx)]2 = [{x + y(dy/dx)}/(1 + dy/dx)]  

=> [{x(1 + dy/dx) - {x + y(dy/dx)}}/(1 + dy/dx)]2 + [{y(1 + dy/dx) - {x + y(dy/dx)}}/(1 + dy/dx)]2 = [{x +

      y(dy/dx)}/(1 + dy/dx)]2

=> [x(1 + dy/dx) - {x + y(dy/dx)}]2 + [y(1 + dy/dx) - {x + y(dy/dx)}]2 = {x + y(dy/dx)}

=> [x + x(dy/dx) - x - y(dy/dx)]2 + [y + y(dy/dx) - x - y(dy/dx)]2 = {x + y(dy/dx)}2

=> [x(dy/dx) - y(dy/dx)]2 + (y - x)2 = {x + y(dy/dx)}2

=> (x - y)2 * (dy/dx)2 + (x - y)2 = {x + y(dy/dx)}2

=> (x - y)2 * {1 + (dy/dx)2 } = {x + y(dy/dx)}2

=> {x + y(dy/dx)}2 = (x - y)2 * {1 + (dy/dx)2 }

This is the required differential equation.

 

Not what you are looking for? Go ahead and submit the question, we will get back to you.

learnohub

Classes

  • Class 6
  • Class 7
  • Class 8
  • Class 9
  • Class 10
  • Class 11
  • Class 12
  • ICSE 6
  • ICSE 7
  • ICSE 8
  • ICSE 9
  • ICSE 10
  • NEET
  • JEE

YouTube Channels

  • LearnoHub Class 11,12
  • LearnoHub Class 9,10
  • LearnoHub Class 6,7,8
  • LearnoHub Kids

Overview

  • FAQs
  • Privacy Policy
  • Terms & Conditions
  • About Us
  • NGO School
  • Contribute
  • Jobs @ LearnoHub
  • Success Stories
© Learnohub 2025.