learnohub
Question:
how to prove cos(x y)= cosxcosy-sinxsiny
Answer:

 

We have to prove that 

cos(x+y)= cosx*cosy-sinx*siny

From the figure,

The angle of the upper triangle i.e. opposite side of the length C is x-y.

Now by cosine law,

      C2 = 12 + 12 - 2*1*1*cos(x-y)

=> C2 = 1 +1 - 2*cos(x-y)

=> C2 = 2 - 2*cos(x-y)

Agian the side of length C joins the points (cosy, siny) and (cosx, sinx), So from Pythagorus theorem

      C2 = (cosy - cosx)2 + (siny - sinx)2

=> C2 = cos2 y + cos2 x - 2*cosx*cosy + sin2 x + sin2 y - 2*sinxsiny

=> C2 = (cos2 y + sin2 y) + (cos2 x + sin2 x) - 2(cosx*cosy - sinxsiny)

=> 2 - 2*cos(x-y) = 1 + 1 - 2(cosx*cosy - sinxsiny)                              (since cos2 θ + sin2 θ = 1, C2 = 2 - 2*cos(x-y) )

=> 2 - 2*cos(x-y) = 2 - 2(cosx*cosy - sinxsiny)

=> - 2*cos(x-y) = - 2(cosx*cosy - sinxsiny)

=>  cos(x-y) = cosx*cosy - sinxsiny

Not what you are looking for? Go ahead and submit the question, we will get back to you.

learnohub

Classes

  • Class 6
  • Class 7
  • Class 8
  • Class 9
  • Class 10
  • Class 11
  • Class 12
  • ICSE 6
  • ICSE 7
  • ICSE 8
  • ICSE 9
  • ICSE 10
  • NEET
  • JEE

YouTube Channels

  • LearnoHub Class 11,12
  • LearnoHub Class 9,10
  • LearnoHub Class 6,7,8
  • LearnoHub Kids

Overview

  • FAQs
  • Privacy Policy
  • Terms & Conditions
  • About Us
  • NGO School
  • Contribute
  • Jobs @ LearnoHub
  • Success Stories
© Learnohub 2025.