learnohub
Question:
If (1-sinA) (1-sinB) (1-sinC)=(1 sinA) (1 sin B)(1 sinC).....prove that each side is plus minus cos A cosB cosC
Answer:

Let (1 + sin a) * (1 + sin b) * (1 + sin c) = k = (1 - sin a) * (1 - sin b) * (1 - sin c) 

So, (1 + sin a) * (1 + sin b) * (1 + sin c) = k  .............1

and (1 - sin a) * (1 - sin b) * (1 - sin c) = k ......2

Now, multiply equation 1 and equation 2, we get

(1 + sin a) * (1 + sin b) * (1 + sin c) * (1 - sin a) * (1 - sin b) * (1 - sin c) = k

=> (1 - sin2 a) * (1 - sin2 b) * (1 - sin2 c) = k

=> cos2 a * cos2 b * cos2 c = k2 

taking square root on both side, we get

=> ± cos a * cos b * cos c = k

So, (1 + sin a) * (1 + sin b) * (1 + sin c) = (1 - sin a) * (1 - sin b) * (1 - sin c) = ±cos a *cos b *cos c

Not what you are looking for? Go ahead and submit the question, we will get back to you.

learnohub

Classes

  • Class 6
  • Class 7
  • Class 8
  • Class 9
  • Class 10
  • Class 11
  • Class 12
  • ICSE 6
  • ICSE 7
  • ICSE 8
  • ICSE 9
  • ICSE 10
  • NEET
  • JEE

YouTube Channels

  • LearnoHub Class 11,12
  • LearnoHub Class 9,10
  • LearnoHub Class 6,7,8
  • LearnoHub Kids

Overview

  • FAQs
  • Privacy Policy
  • Terms & Conditions
  • About Us
  • NGO School
  • Contribute
  • Jobs @ LearnoHub
  • Success Stories
© Learnohub 2025.