
Let a is the first term and d is the common difference of the AP
Now, the series is:
a, a + d, a + 2d, a + 3d, a + 4d, ................up to 2n terms
Now, even position series is:
a + d, a + 3d, a + 5d, ............up to n terms
Now, Sum = (n/1) * {2(a + d) + (n - 1)2d}
=> p = (n/2) * {2(a + d) + (n - 1)2d} .................1
Again, odd position series is:
a, a + 2d, a + 4d, ............up to n terms
Now, Sum = (n/2) * {2a + (n - 1)2d}
=> q = (n/2) * {2a + (n - 1)2d} ..............2
Divide equation 1 and 2, we get
p/q = [(n/2) * {2(a + d) + (n - 1)2d}]/[(n/2) * {2a + (n - 1)2d}]
=> p/q = {2(a + d) + (n - 1)2d}/{2a + (n - 1)2d}
=> p{2a + (n - 1)2d} = q{2(a + d) + (n - 1)2d}
=> 2ap + 2pd (n - 1) = 2qa + 2qd + (n - 1)2qd
=> 2ap +2pd (n - 1) = 2qa + d{2q + q(n - 1)}
=> 2ap - 2qa = d{2q + q(n - 1)} - 2pd (n - 1)
=> 2a(p - q) = d{2q + qn - q - 2pn + 2p}
=> 2a(p - q) = d{q + qn - 2pn + 2p}
=> d = {2a(p - q)}/{q + qn - 2pn + 2p}
Now, nth term of the series is:
Tn = a + (n - 1)d
=> Tn = a + (n - 1) * [{2a(p - q)}/{q + qn - 2pn + 2p}]
=> Tn = a[1 + (n - 1) * {2(p - q)}/{q + qn - 2pn + 2p}]
=> Tn = a[{q + qn - 2pn + 2p + (n - 1) * 2(p - q)}]/{q + qn - 2pn + 2p}