learnohub
Question:
find the range of root of (5+x)(5-x)
Answer:

Let y = √{(5 + x)*(5 - x)}

=> y = √(5 - x2 )

=> y2 = 5 - x2

=> x2 = 5 - y2

=> x = √(5 - y2 )

Now, √(5 - y2 ) is defined, when

      5 - y2 ≥ 0

=>  y2 - 5 ≤ 0

=> y2 - (√5)2 ≤ 0

=> (y - √5)*(y + √5) ≤ 0

=> -√5 ≤ y ≤ √5

Since, the square root of a number is always non-negative.

So, the range of √{(5 + x)*(5 - x)} is 0 ≤ y ≤ √5

Not what you are looking for? Go ahead and submit the question, we will get back to you.

learnohub

Classes

  • Class 4
  • Class 5
  • Class 6
  • Class 7
  • Class 8
  • Class 9
  • Class 10
  • Class 11
  • Class 12
  • ICSE 6
  • ICSE 7
  • ICSE 8
  • ICSE 9
  • ICSE 10
  • NEET
  • JEE

YouTube Channels

  • LearnoHub Class 11,12
  • LearnoHub Class 9,10
  • LearnoHub Class 6,7,8
  • LearnoHub Facts
  • LearnoHub Kids

Overview

  • FAQs
  • Privacy Policy
  • Terms & Conditions
  • About Us
  • NGO School
  • Contribute
  • Jobs @ LearnoHub
  • Success Stories
© Learnohub 2025.