
Let y = (sin x)y
Take log on both side, we get
=> log y = log(sin x)y
=> log y = y*log(sin x)
=> (1/y)*(dy/dx) = (dy/dx)*log(sin x) + (y/sin x)*cos x
=> (1/y)*(dy/dx) - (dy/dx)*log(sin x) = (y*cos x)/sin x
=> {(1/y) - log(sin x)}*(dy/dx) = (y*cos x)/sin x
=> dy/dx = {y*cos x/sin x}/{(1/y) - log(sin x)}
=> dy/dx = {y*cos x/sin x}/{1 - ylog(sin x)/y}
=> dy/dx = {y2 *cos x/sin x}/{1 - ylog(sin x)}
=> dy/dx = {{(sin x)y }2 *cot x}/{1 - (sin x)y *log(sin x)}