learnohub
Question:
Find the derivative of Sin x^y
Answer:

Let y = (sin x)y

Take log on both side, we get

=> log y = log(sin x)y

=> log y = y*log(sin x)

=> (1/y)*(dy/dx) = (dy/dx)*log(sin x) + (y/sin x)*cos x

=> (1/y)*(dy/dx) - (dy/dx)*log(sin x) = (y*cos x)/sin x

=> {(1/y) - log(sin x)}*(dy/dx) = (y*cos x)/sin x

=> dy/dx = {y*cos x/sin x}/{(1/y) - log(sin x)}

=> dy/dx = {y*cos x/sin x}/{1 - ylog(sin x)/y}

=> dy/dx = {y2 *cos x/sin x}/{1 - ylog(sin x)}

=> dy/dx = {{(sin x)y }2 *cot x}/{1 - (sin x)y *log(sin x)}

Not what you are looking for? Go ahead and submit the question, we will get back to you.

learnohub

Classes

  • Class 6
  • Class 7
  • Class 8
  • Class 9
  • Class 10
  • Class 11
  • Class 12
  • ICSE 6
  • ICSE 7
  • ICSE 8
  • ICSE 9
  • ICSE 10
  • NEET
  • JEE

YouTube Channels

  • LearnoHub Class 11,12
  • LearnoHub Class 9,10
  • LearnoHub Class 6,7,8
  • LearnoHub Kids

Overview

  • FAQs
  • Privacy Policy
  • Terms & Conditions
  • About Us
  • NGO School
  • Contribute
  • Jobs @ LearnoHub
  • Success Stories
© Learnohub 2025.