learnohub
Question:
cos4A - cos4B=8(cosA-cosB)(cosA cosB)(cosA-sinB)(cosA sinB) prove
Answer:

Given, cos 4A - cos 4B

= 2cos2 2A - 1 - (2cos2 2B - 1)       {since 2cos2 x - 1 = cos 2x}

= 2cos2 2A - 1 - 2cos2 2B + 1

= 2cos2 2A - 2cos2 2B

= 2(cos2 2A - cos2 2B)

= 2(cos 2A - cos 2B) * (cos 2A + cos 2B)

= 2{2cos2 A - 1 - (2cos2 B - 1)} * {2cos2 A - 1 + 1 - 2sin2 B}   {since 1 - 2sin2 x = cos 2x}

= 2{2cos2 A - 1 - 2cos2 B + 1} * {2cos2 A - 1 + 1 - 2sin2 B}

= 2{2cos2 A - 2cos2 B} * {2cos2 A - 2sin2 B}

= 2*2*2{cos2 A - cos2 B} * {cos2 A - sin2 B}

= 8(cos A - cos B)*(cos A + cos B)*(cos A - sin B)*(cos A + sin B)

So, cos 4A - cos 4B = 8(cos A - cos B)*(cos A + cos B)*(cos A - sin B)*(cos A + sin B)

Not what you are looking for? Go ahead and submit the question, we will get back to you.

learnohub

Classes

  • Class 4
  • Class 5
  • Class 6
  • Class 7
  • Class 8
  • Class 9
  • Class 10
  • Class 11
  • Class 12
  • ICSE 6
  • ICSE 7
  • ICSE 8
  • ICSE 9
  • ICSE 10
  • NEET
  • JEE

YouTube Channels

  • LearnoHub Class 11,12
  • LearnoHub Class 9,10
  • LearnoHub Class 6,7,8
  • LearnoHub Facts
  • LearnoHub Kids

Overview

  • FAQs
  • Privacy Policy
  • Terms & Conditions
  • About Us
  • NGO School
  • Contribute
  • Jobs @ LearnoHub
  • Success Stories
© Learnohub 2025.