learnohub
Question:
Proove that sin5x = 5sinx - 20sin^3x 16sin^5x
Answer:

Given, sin 5x = sin(4x + x)

= sin 4x cos x + cos 4x sin x

= 2 sin 2x cos 2x cos x + (1 - 2 sin2 2x) sin x

= 4 sin x cos x cos 2x cos x + sin x - 2 sin2 2x sin x

= 4 sin x cos2 x (1 - 2 sin2 x) + sin x - 2 (2 sin x cos x)2 sin x

= 4 sin x (1 - sin2 x) (1 - 2 sin2 x) + sin x - 2 (4 sin2 x cos2 x) sin x

= 4 sin x (1 - 3 sin2 x + 2 sin4 x) + sin x - 2 [4 sin3 x * (1 - sin2 x)]

= 4 sin x - 12 sin3 x + 8 sin5 x + sin x - 8 sin3 x + 8 sin5 x

= 16 sin5 x - 20 sin3 x + 5 sinx

So, sin 5x = 16 sin5 x - 20 sin3 x + 5 sinx

Not what you are looking for? Go ahead and submit the question, we will get back to you.

learnohub

Classes

  • Class 6
  • Class 7
  • Class 8
  • Class 9
  • Class 10
  • Class 11
  • Class 12
  • ICSE 6
  • ICSE 7
  • ICSE 8
  • ICSE 9
  • ICSE 10
  • NEET
  • JEE

YouTube Channels

  • LearnoHub Class 11,12
  • LearnoHub Class 9,10
  • LearnoHub Class 6,7,8
  • LearnoHub Kids

Overview

  • FAQs
  • Privacy Policy
  • Terms & Conditions
  • About Us
  • NGO School
  • Contribute
  • Jobs @ LearnoHub
  • Success Stories
© Learnohub 2025.